163,772 research outputs found

    Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history

    Get PDF
    Spatial spread of infectious diseases among populations via the mobility of humans is highly stochastic and heterogeneous. Accurate forecast/mining of the spread process is often hard to be achieved by using statistical or mechanical models. Here we propose a new reverse problem, which aims to identify the stochastically spatial spread process itself from observable information regarding the arrival history of infectious cases in each subpopulation. We solved the problem by developing an efficient optimization algorithm based on dynamical programming, which comprises three procedures: i, anatomizing the whole spread process among all subpopulations into disjoint componential patches; ii, inferring the most probable invasion pathways underlying each patch via maximum likelihood estimation; iii, recovering the whole process by assembling the invasion pathways in each patch iteratively, without burdens in parameter calibrations and computer simulations. Based on the entropy theory, we introduced an identifiability measure to assess the difficulty level that an invasion pathway can be identified. Results on both artificial and empirical metapopulation networks show the robust performance in identifying actual invasion pathways driving pandemic spread.Comment: 14pages, 8 figures; Accepted by IEEE Transactions on Cybernetic

    Modular Properties of 3D Higher Spin Theory

    Full text link
    In the three-dimensional sl(N) Chern-Simons higher-spin theory, we prove that the conical surplus and the black hole solution are related by the S-transformation of the modulus of the boundary torus. Then applying the modular group on a given conical surplus solution, we generate a 'SL(2,Z)' family of smooth constant solutions. We then show how these solutions are mapped into one another by coordinate transformations that act non-trivially on the homology of the boundary torus. After deriving a thermodynamics that applies to all the solutions in the 'SL(2,Z)' family, we compute their entropies and free energies, and determine how the latter transform under the modular transformations. Summing over all the modular images of the conical surplus, we write down a (tree-level) modular invariant partition function.Comment: 51 pages; v2: minor corrections and additions; v3: final version, to appear in JHE
    • …
    corecore